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Motivation: automated driving

Naive MPC Dual MPC
Constant Velocity Predictions Adaptive constraints & online training

[1] T.M.J.T. Baltussen, E. Lefeber, R. T6th, W.P.M.H. Heemels and A. Katriniok, “Online learning of interaction dynamics with
dual model predictive control for multi-agent systems using Gaussian processes,” American Control Conference 2025
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Dual Control Iy == A{xk, Zh—1-- - Z0},
where z; = [z, ,u; ] € R™

Dual objectives

* Control vs system identification

Dual effect [2]

Sik = E[E5 | T Ugimn] # B2k | T

* Caution: conservatism under uncertainty (or lack thereof)
* Active learning: steer system to states provide information

[2]Y. Bar-Shalom and E. Tse, "Dual effect, certainty equivalence, and separation in stochastic
control," in IEEE Transactions on Automatic Control, vol. 19, no. 5, pp. 494-500, October 1974
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Tp+1 = f(zg, ug) +g($kauk) + Uk,

Safety? -

=Wk
Nominal Unmodeled
dynamics dynamics

* Bounded uncertainties
¢ Given arobust MPC
* Contingency MPC inherits safety guarantees

v, € VCR"™ w, €¢ WCR"™

% %, %, Xy

Contingency f(
- i Tk, U
I Horizon k ) k

2O ‘@ e F@y, ug) + d(y, up, Ir)
Xy

d(xkv U’kal-k) ~ g(xka uk)

[3] M. Geurts*, T. Baltussen*, A. Katriniok and M. Heemels, "A Contingency Model Predictive Control
Framework for Safe Learning," in IEEE Control Systems Letters, 2025 - Presented at CDC 2025
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s,s2 <MP s',s? > MP

(= B
Lane Merging (2) - P

RMPC Contingency MPC GP-MPC
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[3] M. Geurts*, T. Baltussen*, A. Katriniok and M. Heemels, "A Contingency Model Predictive Control
Framework for Safe Learning," in IEEE Control Systems Letters, 2025 - Presented at CDC 2025.
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Active Learning

* Active learning framework [5]
» Safety guarantees

Tl
Fs =kx +g(x) '
m l— u = F
= '
F.=ciq

[4] T. Baltussen, M. Heemels & A. Katriniok, "Dual MPC for Active
Learning of Nonparametric Uncertainties," preprint on arXiv2511.08542.
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H (z, ol Uk)

min
2ok Uk \Ur , AJg

st J (w,upo1, Uk) = JE + Ay,
Ap < Bmax{J;,0} + 7+ Vi1,
Ak S Bmaxmax{J,j,O} +,ymaxv

i=01,...
j=0,1,...

, IV,
N,

Tk € Xy,

Totjlk € Xjlks

[5] Soloperto, R., Kohler, J., & Allgéwer, F., Augmenting MPC schemes with active learning:
Intuitive tuning and guaranteed performance. IEEE Control Systems Letters, pp. 713-718, 2020.

=

5/8

S\ e



Active Learning

2
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» Safe exploration
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[4] T. Baltussen, M. Heemels & A. Katriniok, "Dual MPC for Active [5] Soloperto, R., Kohler, J., & Allgéwer, F., Augmenting MPC schemes with active learning:

Learning of Nonparametric Uncertainties," preprinton arXiv2511.08542.  Intuitive tuning and guaranteed performance. IEEE Control Systems Letters, pp. 713-718, 2020.
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Value Function Approximation for MPC

. . . 0.2
* Synthesize terminal cost function s
* Descent constraint 0.16
 Scenario optimization GeH
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[6] T.M.J.T. Baltussen, C.A. Orrico, A. Katriniok, W.P.M.H. Heemels and D. Krishnamoorthy, Value Function Approximation for Nonlinear MPC:
Learning a Terminal Cost Function with a Descent Property, 2025, preprint on arXiv 2508.05804 - Presented at CDC 2025.
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Conference on Decision and Control

Let’s connect CDC2025

Rio de Janeiro, Brazil. Dec. 09 - 12

Value Function Approximation for Nonlinear MPC:
Learning a Terminal Cost Function with a Descent
Property, 16:30-16:45 (ThC16.1)

A Contingency Model Predictive Control Framework : u
for Safe Learning, 17:00-17:15 (ThC16.3) -

[=]

Both on Thursday, Regular Session, Capri lll Linkto We;page
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